Multichannel Amplifier
for the Injection Molding Industry

The purpose of the multichannel charge amplifier Type 5155A... with 1, 2 or 4 channels is to convert the charge signal from piezoelectric sensors or the signal from thermocouples into a proportional voltage signal. This amplifier has been developed for industrial applications, primarily for injection molding machines.

- Charge amplifier with 2 measuring ranges
- Charge and thermocouple amplifier
- Self-optimizing switch-over output (SmartAmp-Option)
- Industrial case with IP65 protection

Description
The multichannel charge amplifier Type 5155A... is provided with one, two or four charge amplifier modules (indicated in the circuit diagram as MLV). The two measuring ranges of the charge amplifier inputs can be switched over for each channel individually by remote control. Amplifiers equipped with temperature inputs are provided with 1 charge amplifier and 1 temperature amplifier or 2 charge amplifiers and 2 temperature amplifiers. All charge amplifier modules contain at the input a capacitive negative feedback amplifier in hybrid design with an extremely high insulation resistance.

In thermoplastic injection molding, the SmartAmp option "self-optimizing switch-over detection" automatically detects volumetric filling of the mold, and in each cycle sends a control signal to the injection molding machine. The mold must be equipped with a directly measuring cavity pressure sensor close to the gate.

Application
The multichannel charge amplifier Type 5155A... is intended for use with all types of piezoelectric sensors and Type K thermocouples. The output signals can be used to monitor, control and optimize the injection molding process.

The SmartAmp option “self-optimizing switch-over detection” can be easily integrated in machine control systems. For retrofitting, the injection molding machine must be prepared by the machine manufacturer. This option considerably reduce the setting-up time, since the switching point is automatically preset by means of the charge amplifier without the need of manual optimization. During production, the option automatically compensate process fluctuations, thereby producing moldings of greater uniformity.
Technical Data

Charge Amplifier

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>1, 2 or 4</td>
</tr>
<tr>
<td>Measuring range I</td>
<td>pC min. ±5 000</td>
</tr>
<tr>
<td></td>
<td>pC max. ±50 000</td>
</tr>
<tr>
<td>adjusted to</td>
<td></td>
</tr>
<tr>
<td>Type 5155A1xxx</td>
<td>pC ±50 000</td>
</tr>
<tr>
<td>Type 5155A2xxx</td>
<td>pC ±20 000</td>
</tr>
<tr>
<td>Type 5155A3xxx</td>
<td>pC customer option</td>
</tr>
<tr>
<td>Measuring range ratios</td>
<td></td>
</tr>
<tr>
<td>Range I/Range II</td>
<td></td>
</tr>
<tr>
<td>Type 5155Ax1xx</td>
<td>10</td>
</tr>
<tr>
<td>Type 5155Ax2xx</td>
<td>4</td>
</tr>
<tr>
<td>Type 5155Ax3xx</td>
<td>2</td>
</tr>
<tr>
<td>Drift</td>
<td>pC/s <±0,05</td>
</tr>
<tr>
<td>Reset-Operate transient</td>
<td>pC <±2</td>
</tr>
<tr>
<td>Maximum voltage between sensor GND and output/supply GND</td>
<td>V <±4</td>
</tr>
</tbody>
</table>

Interference signal rejection	dBB >50
between sensor GND and output/supply GND (0 ... 0,3 kHz)	
Maximum input signal	
Voltage (continuous)	V ±10
Charge	pC ±150 000

Thermocouple Amplifier

Noise suppression (ground loop) through differential input stage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Thermocouple (switchable to Type J available on request)</td>
<td>K</td>
</tr>
<tr>
<td>Measuring range</td>
<td>°C 0 ... 200</td>
</tr>
<tr>
<td>Output voltage</td>
<td>V 0 ... 10</td>
</tr>
<tr>
<td>Output current</td>
<td>mA 0 ... 2</td>
</tr>
<tr>
<td>Input impedance</td>
<td>Ω >1</td>
</tr>
<tr>
<td>Output impedance</td>
<td>Ω 10</td>
</tr>
<tr>
<td>Zero point error</td>
<td>mV <10</td>
</tr>
<tr>
<td>Transmission sensitivity</td>
<td>mV/K 50</td>
</tr>
<tr>
<td>Error (gain)</td>
<td>% ±0,5</td>
</tr>
<tr>
<td>Error (non-linearity)</td>
<td>°C <1,5</td>
</tr>
<tr>
<td>Output interference signal (0,1 Hz ... 1 MHz)</td>
<td>mVpp <20</td>
</tr>
<tr>
<td>Frequency range</td>
<td>kHz 0 ... >1</td>
</tr>
<tr>
<td>Max. voltage between input minus and output/supply GND</td>
<td>V <±4</td>
</tr>
<tr>
<td>Sensor disconnection detection</td>
<td>V ≈-4</td>
</tr>
</tbody>
</table>

Calibration: 0 °C = 0 V, 100 °C = 5 V

A differential input circuit ensures that common-mode signals of ±4 V between Sensor/Low and Output/Power GND, such as occur in industrial environments, have no disturbing influence.

Control inputs for Reset/Operate, Measuring Range II, Sensitivity, Test

Actuation is bipolar and electrically isolated via optocouplers. The common input of Test/Operate/Measuring range II/Sensitivity (Control GND, PIN 18 of the D-Sub connector) can be connected internally either with the potential 18 ... 30 VDC or Exct GND. Accordingly Test, Operate, Measuring range II and Sensitivity are actuated with negative voltage or optionally with user specified voltage.

<table>
<thead>
<tr>
<th>Actuation voltage</th>
<th>Operation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate (logic 1)</td>
<td>V</td>
<td>3 ... 30</td>
</tr>
<tr>
<td>Reset (logic 0)</td>
<td>V</td>
<td><2</td>
</tr>
<tr>
<td>Measuring range II (logic 1)</td>
<td>V</td>
<td>3 ... 30</td>
</tr>
<tr>
<td>Measuring range I (logic 0)</td>
<td>V</td>
<td><2</td>
</tr>
<tr>
<td>Test signal (logic 1)</td>
<td>V</td>
<td>3 ... 30</td>
</tr>
<tr>
<td>No Test signal (logic 0)</td>
<td>V</td>
<td><2</td>
</tr>
<tr>
<td>Sensitivity <5 pC/bar (logic 1)</td>
<td>V</td>
<td>3 ... 30</td>
</tr>
<tr>
<td>Sensitivity >5 pC/bar (logic 0)</td>
<td>V</td>
<td><2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuation current</th>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,6 ... 9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output signal when Test and Measuring range II active</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage output</td>
<td>V</td>
</tr>
<tr>
<td>Current output 4 ... 20 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Tolerance of test signal</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Current Output 4 ... 20 mA

Option in place of voltage output. Not available for combined charge amplifier and thermocouple amplifier versions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>% <1,3</td>
</tr>
<tr>
<td>Zero point error (Reset)</td>
<td>mA ±0,016</td>
</tr>
<tr>
<td>Output current</td>
<td>mA 4 ... 20</td>
</tr>
<tr>
<td>Output current limitation</td>
<td>mA 25</td>
</tr>
<tr>
<td>Output impedance</td>
<td>Ω >40</td>
</tr>
<tr>
<td>Maximum load resistance</td>
<td>Ω 650</td>
</tr>
</tbody>
</table>

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.
Multichannel Amplifier – for the Injection Molding Industry, Type 5155A...

FIX/SL
The outputs are switched via photo MOS relays.

<table>
<thead>
<tr>
<th>Current rating, continuous</th>
<th>mA</th>
<th><100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current rating, pulse (<0.1 s)</td>
<td>mA</td>
<td><300</td>
</tr>
<tr>
<td>Resistance when switched on</td>
<td>Ω</td>
<td><50</td>
</tr>
<tr>
<td>Typical resistance</td>
<td>Ω</td>
<td>30</td>
</tr>
<tr>
<td>Constant voltage</td>
<td>V</td>
<td><±42</td>
</tr>
<tr>
<td>Voltage between outputs and protective ground</td>
<td>V<sub>aux</sub></td>
<td><30</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>VDC</th>
<th>18 ... 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption per</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge amplifier channel (without load and without SLP)</td>
<td>mA</td>
<td>≈10</td>
</tr>
<tr>
<td>Thermocouple channel (without load)</td>
<td>mA</td>
<td>≈15</td>
</tr>
<tr>
<td>Additional current consumption by SLP</td>
<td>mA</td>
<td>≈35</td>
</tr>
<tr>
<td>Current output per channel (without load)</td>
<td>mA</td>
<td>≈2.5</td>
</tr>
</tbody>
</table>

Connections

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Charge input</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TNC neg. or BNC neg. or 4-channel Fischer multipole plug</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermocouple input</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fischer DBPU 102 A051 female</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply, signal outputs, Control inputs</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Sub 25 pin male</td>
<td></td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Operating temperature range</th>
<th>ºC</th>
<th>0 ... 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min./max. temperature</td>
<td>ºC</td>
<td>−10/70</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>gP</td>
<td>10</td>
</tr>
<tr>
<td>(20 ... 2 000 Hz, duration 16 min., cycle 2 min.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock resistance (1 ms)</td>
<td>g</td>
<td>200</td>
</tr>
<tr>
<td>Degree of protection (only with screwed-on TNC connectors) DIN 40050</td>
<td>IP</td>
<td>65</td>
</tr>
<tr>
<td>Housing material</td>
<td></td>
<td>die cast aluminium</td>
</tr>
<tr>
<td>Weight</td>
<td>g</td>
<td>≈400</td>
</tr>
</tbody>
</table>

- • Recommended mounting position: on perpendicular surface, connections downward
- • The case ground is connected to the output or supply ground only via an R/C network. This prevents interference due to a “floating” case.

Contact Assignment D-Sub 25 Connector

```
| 1 | Signal Out Ch1 |
| 2 | Signal Out Ch2 a) |
| 3 | Signal Out Ch3 b) |
| 4 | Signal Out Ch4 b) |
| 5 | NC |
| 6 | Exct 18 ... 30 VDC |
| 7 | Exct 18 ... 30 VDC |
| 8 | Exct GND |
| 9 | NC |
| 10 | NC |
| 11 | Common FIX/SL |
| 12 | FIX c) |
| 13 | SL c) |
| 14 | Signal GND |
| 15 | NC |
| 16 | NC |
| 17 | NC |
| 18 | Common Control |
| 19 | Operate |
| 20 | Sensitivity c) |
| 21 | Test |
| 22 | Range II Ch1 |
| 23 | Range II Ch2 a) |
| 24 | Range II Ch3 a) |
| 25 | Range II Ch4 a) |

a) with 1 channel version: NC
b) with 1 and 2 channel version: NC
c) with version without SmartAmp “self-optimizing switching-point detection”: NC
d) with temperature input: NC
```

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.
Fig. 1: Block schematic diagram for Type 5155A... with SmartAmp *self-optimizing switching-point detection*
Dimensions

Fig. 2: Dimensions of charge amplifier Type 5155Axx7x, 5155Axx8x, 5155Axx3x, 5155Axx4x, 5155Axx1x, 5155Axx2x (1-, 2-, 4-channel charge amplifier)

Fig. 3: Dimensions of charge amplifier Type 5155AxxAx, 5155AxxBx (1-channel charge amplifier, 1-channel thermocouple amplifier)

Fig. 4: Dimensions of charge amplifier Type 5155AxxCx, 5155AxxDx (2-channel charge amplifier, 2-channel thermocouple amplifier)

Fig. 5: Dimensions of charge amplifier Type 5155A2251 (4-channel charge amplifier)
Optional Accessories

- 2 cheese-head screws M4 x 16
 Art. No./Type: 6.120.013
- 2 spring washers M4
 Art. No./Type: 6.230.063
- TNC-BNC adapter
 Art. No./Type: 1200A73
- Connecting cable (with open end) for connection to the injection molding machine
 Art. No./Type: 1709

Optional Accessories

- D-Sub plastic cover, water-tight, shielded and 25 pin D-Sub connector (CONEC 165 X 15039X)
 Art. No./Type: 1557A10
- Connecting cable (equalizing cable) for the connection of temperature sensors
 Length = 2 m
 Art. No./Type: 2295A2
 Length = 5 m
 Art. No./Type: 2295A5

Ordering Key

Measuring Range I (Calibrated)

<table>
<thead>
<tr>
<th>Measuring Range</th>
<th>Art. No./Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>±50 000 pC</td>
<td>1</td>
</tr>
<tr>
<td>±20 000 pC</td>
<td>2</td>
</tr>
<tr>
<td>According to order</td>
<td>3</td>
</tr>
</tbody>
</table>

Ratio Measuring Range I/Measuring Range II

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Art. No./Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Channels, Sensor Connection

- 1 channel charge, TNC neg. (IP65)
 Art. No./Type: 1
- 1 channel charge, BNC neg. (IP60)
 Art. No./Type: 2
- 2 channel charge, TNC neg. (IP65)
 Art. No./Type: 3
- 2 channel charge, BNC neg. (IP60)
 Art. No./Type: 4
- 4 channel charge, TNC neg. (IP65)
 Art. No./Type: 7
- 4 channel charge, BNC neg. (IP60)
 Art. No./Type: 8
- 4 channel charge, 4 channel connector for cable type 1995A...
 Art. No./Type: 5****
- 1 channel charge, TNC neg., 1 channel temperature (IP65)
 Art. No./Type: A***
- 1 channel charge, BNC neg., 1 channel temperature (IP60)
 Art. No./Type: B***
- 2 channel charge, TNC neg., 2 channel temperature (IP65)
 Art. No./Type: C***
- 2 channel charge, BNC neg., 2 channel temperature (IP60)
 Art. No./Type: D***

SmartAmp

- SmartAmp without SmartAmp, voltage output
 Art. No./Type: 1
- SmartAmp without SmartAmp, current output
 Art. No./Type: 2*
- with SmartAmp "self-optimizing switching-point detection", voltage output
 Art. No./Type: 3**
- with SmartAmp "self-optimizing switching-point detection", current output
 Art. No./Type: 4**

* Not possible in combination with thermocouple amplifier
** Charge amplifiers are supplied only with Range I = 20 000 pC and ratio Range I/Range II = 4
*** Charge and thermocouple amplifier only available with Range I = 20 000 pC and ratio Range I/Range II = 4
**** Charge amplifiers are supplied only with Range I = 20 000 pC and ratio Range I/Range II = 4; without SmartAmp, current output not available